Quantifiers and Equality

The last chapter introduced you to methods that construct proofs of statements involving the propositional connectives. In this chapter, we extend the repertoire of logical constructions to include the universal and existential quantifiers, and the equality relation.

The Universal Quantifier

Notice that if α is any type, we can represent a unary predicate p on α as an object of type α → Prop. In that case, given x : α, p x denotes the assertion that p holds of x. Similarly, an object r : α → α → Prop denotes a binary relation on α: given x y : α, r x y denotes the assertion that x is related to y.

The universal quantifier, ∀ x : α, p x is supposed to denote the assertion that "for every x : α, p x" holds. As with the propositional connectives, in systems of natural deduction, "forall" is governed by an introduction and elimination rule. Informally, the introduction rule states:

Given a proof of p x, in a context where x : α is arbitrary, we obtain a proof ∀ x : α, p x.

The elimination rule states:

Given a proof ∀ x : α, p x and any term t : α, we obtain a proof of p t.

As was the case for implication, the propositions-as-types interpretation now comes into play. Remember the introduction and elimination rules for dependent arrow types:

Given a term t of type β x, in a context where x : α is arbitrary, we have (fun x : α => t) : (x : α) → β x.

The elimination rule states:

Given a term s : (x : α) → β x and any term t : α, we have s t : β t.

In the case where p x has type Prop, if we replace (x : α) → β x with ∀ x : α, p x, we can read these as the correct rules for building proofs involving the universal quantifier.

The Calculus of Constructions therefore identifies dependent arrow types with forall-expressions in this way. If p is any expression, ∀ x : α, p is nothing more than alternative notation for (x : α) → p, with the idea that the former is more natural than the latter in cases where p is a proposition. Typically, the expression p will depend on x : α. Recall that, in the case of ordinary function spaces, we could interpret α → β as the special case of (x : α) → β in which β does not depend on x. Similarly, we can think of an implication p → q between propositions as the special case of ∀ x : p, q in which the expression q does not depend on x.

Here is an example of how the propositions-as-types correspondence gets put into practice.

example (α : Type) (p q : α → Prop) : (∀ x : α, p x ∧ q x) → ∀ y : α, p y :=
  fun h : ∀ x : α, p x ∧ q x =>
  fun y : α =>
  show p y from (h y).left

As a notational convention, we give the universal quantifier the widest scope possible, so parentheses are needed to limit the quantifier over x to the hypothesis in the example above. The canonical way to prove ∀ y : α, p y is to take an arbitrary y, and prove p y. This is the introduction rule. Now, given that h has type ∀ x : α, p x ∧ q x, the expression h y has type p y ∧ q y. This is the elimination rule. Taking the left conjunct gives the desired conclusion, p y.

Remember that expressions which differ up to renaming of bound variables are considered to be equivalent. So, for example, we could have used the same variable, x, in both the hypothesis and conclusion, and instantiated it by a different variable, z, in the proof:

example (α : Type) (p q : α → Prop) : (∀ x : α, p x ∧ q x) → ∀ x : α, p x :=
  fun h : ∀ x : α, p x ∧ q x =>
  fun z : α =>
  show p z from And.left (h z)

As another example, here is how we can express the fact that a relation, r, is transitive:

variable (α : Type) (r : α → α → Prop)
variable (trans_r : ∀ x y z, r x y → r y z → r x z)

variable (a b c : α)
variable (hab : r a b) (hbc : r b c)

#check trans_r    -- ∀ (x y z : α), r x y → r y z → r x z
#check trans_r a b c
#check trans_r a b c hab
#check trans_r a b c hab hbc

Think about what is going on here. When we instantiate trans_r at the values a b c, we end up with a proof of r a b → r b c → r a c. Applying this to the "hypothesis" hab : r a b, we get a proof of the implication r b c → r a c. Finally, applying it to the hypothesis hbc yields a proof of the conclusion r a c.

In situations like this, it can be tedious to supply the arguments a b c, when they can be inferred from hab hbc. For that reason, it is common to make these arguments implicit:

variable (α : Type) (r : α → α → Prop)
variable (trans_r : ∀ {x y z}, r x y → r y z → r x z)

variable (a b c : α)
variable (hab : r a b) (hbc : r b c)

#check trans_r
#check trans_r hab
#check trans_r hab hbc

The advantage is that we can simply write trans_r hab hbc as a proof of r a c. A disadvantage is that Lean does not have enough information to infer the types of the arguments in the expressions trans_r and trans_r hab. The output of the first #check command is r ?m.1 ?m.2 → r ?m.2 ?m.3 → r ?m.1 ?m.3, indicating that the implicit arguments are unspecified in this case.

Here is an example of how we can carry out elementary reasoning with an equivalence relation:

variable (α : Type) (r : α → α → Prop)

variable (refl_r : ∀ x, r x x)
variable (symm_r : ∀ {x y}, r x y → r y x)
variable (trans_r : ∀ {x y z}, r x y → r y z → r x z)

example (a b c d : α) (hab : r a b) (hcb : r c b) (hcd : r c d) : r a d :=
  trans_r (trans_r hab (symm_r hcb)) hcd

To get used to using universal quantifiers, you should try some of the exercises at the end of this section.

It is the typing rule for dependent arrow types, and the universal quantifier in particular, that distinguishes Prop from other types. Suppose we have α : Sort i and β : Sort j, where the expression β may depend on a variable x : α. Then (x : α) → β is an element of Sort (imax i j), where imax i j is the maximum of i and j if j is not 0, and 0 otherwise.

The idea is as follows. If j is not 0, then (x : α) → β is an element of Sort (max i j). In other words, the type of dependent functions from α to β "lives" in the universe whose index is the maximum of i and j. Suppose, however, that β is of Sort 0, that is, an element of Prop. In that case, (x : α) → β is an element of Sort 0 as well, no matter which type universe α lives in. In other words, if β is a proposition depending on α, then ∀ x : α, β is again a proposition. This reflects the interpretation of Prop as the type of propositions rather than data, and it is what makes Prop impredicative.

The term "predicative" stems from foundational developments around the turn of the twentieth century, when logicians such as Poincaré and Russell blamed set-theoretic paradoxes on the "vicious circles" that arise when we define a property by quantifying over a collection that includes the very property being defined. Notice that if α is any type, we can form the type α → Prop of all predicates on α (the "power type of α"). The impredicativity of Prop means that we can form propositions that quantify over α → Prop. In particular, we can define predicates on α by quantifying over all predicates on α, which is exactly the type of circularity that was once considered problematic.

Equality

Let us now turn to one of the most fundamental relations defined in Lean's library, namely, the equality relation. In Chapter Inductive Types, we will explain how equality is defined from the primitives of Lean's logical framework. In the meanwhile, here we explain how to use it.

Of course, a fundamental property of equality is that it is an equivalence relation:

#check Eq.refl    -- ∀ (a : ?m.1), a = a
#check Eq.symm    -- ?m.2 = ?m.3 → ?m.3 = ?m.2
#check Eq.trans   -- ?m.2 = ?m.3 → ?m.3 = ?m.4 → ?m.2 = ?m.4

We can make the output easier to read by telling Lean not to insert the implicit arguments (which are displayed here as metavariables).

universe u

#check @Eq.refl.{u}   -- ∀ {α : Sort u} (a : α), a = a
#check @Eq.symm.{u}   -- ∀ {α : Sort u} {a b : α}, a = b → b = a
#check @Eq.trans.{u}  -- ∀ {α : Sort u} {a b c : α}, a = b → b = c → a = c

The inscription .{u} tells Lean to instantiate the constants at the universe u.

Thus, for example, we can specialize the example from the previous section to the equality relation:

variable (α : Type) (a b c d : α)
variable (hab : a = b) (hcb : c = b) (hcd : c = d)

example : a = d :=
  Eq.trans (Eq.trans hab (Eq.symm hcb)) hcd

We can also use the projection notation:

# variable (α : Type) (a b c d : α)
# variable (hab : a = b) (hcb : c = b) (hcd : c = d)
example : a = d := (hab.trans hcb.symm).trans hcd

Reflexivity is more powerful than it looks. Recall that terms in the Calculus of Constructions have a computational interpretation, and that the logical framework treats terms with a common reduct as the same. As a result, some nontrivial identities can be proved by reflexivity:

variable (α β : Type)

example (f : α → β) (a : α) : (fun x => f x) a = f a := Eq.refl _
example (a : α) (b : β) : (a, b).1 = a := Eq.refl _
example : 2 + 3 = 5 := Eq.refl _

This feature of the framework is so important that the library defines a notation rfl for Eq.refl _:

# variable (α β : Type)
example (f : α → β) (a : α) : (fun x => f x) a = f a := rfl
example (a : α) (b : β) : (a, b).1 = a := rfl
example : 2 + 3 = 5 := rfl

Equality is much more than an equivalence relation, however. It has the important property that every assertion respects the equivalence, in the sense that we can substitute equal expressions without changing the truth value. That is, given h1 : a = b and h2 : p a, we can construct a proof for p b using substitution: Eq.subst h1 h2.

example (α : Type) (a b : α) (p : α → Prop)
        (h1 : a = b) (h2 : p a) : p b :=
  Eq.subst h1 h2

example (α : Type) (a b : α) (p : α → Prop)
    (h1 : a = b) (h2 : p a) : p b :=
  h1 ▸ h2

The triangle in the second presentation is a macro built on top of Eq.subst and Eq.symm, and you can enter it by typing \t.

The rule Eq.subst is used to define the following auxiliary rules, which carry out more explicit substitutions. They are designed to deal with applicative terms, that is, terms of form s t. Specifically, congrArg can be used to replace the argument, congrFun can be used to replace the term that is being applied, and congr can be used to replace both at once.

variable (α : Type)
variable (a b : α)
variable (f g : α → Nat)
variable (h₁ : a = b)
variable (h₂ : f = g)

example : f a = f b := congrArg f h₁
example : f a = g a := congrFun h₂ a
example : f a = g b := congr h₂ h₁

Lean's library contains a large number of common identities, such as these:

variable (a b c : Nat)

example : a + 0 = a := Nat.add_zero a
example : 0 + a = a := Nat.zero_add a
example : a * 1 = a := Nat.mul_one a
example : 1 * a = a := Nat.one_mul a
example : a + b = b + a := Nat.add_comm a b
example : a + b + c = a + (b + c) := Nat.add_assoc a b c
example : a * b = b * a := Nat.mul_comm a b
example : a * b * c = a * (b * c) := Nat.mul_assoc a b c
example : a * (b + c) = a * b + a * c := Nat.mul_add a b c
example : a * (b + c) = a * b + a * c := Nat.left_distrib a b c
example : (a + b) * c = a * c + b * c := Nat.add_mul a b c
example : (a + b) * c = a * c + b * c := Nat.right_distrib a b c

Note that Nat.mul_add and Nat.add_mul are alternative names for Nat.left_distrib and Nat.right_distrib, respectively. The properties above are stated for the natural numbers (type Nat).

Here is an example of a calculation in the natural numbers that uses substitution combined with associativity and distributivity.

example (x y : Nat) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
  have h1 : (x + y) * (x + y) = (x + y) * x + (x + y) * y :=
    Nat.mul_add (x + y) x y
  have h2 : (x + y) * (x + y) = x * x + y * x + (x * y + y * y) :=
    (Nat.add_mul x y x) ▸ (Nat.add_mul x y y) ▸ h1
  h2.trans (Nat.add_assoc (x * x + y * x) (x * y) (y * y)).symm

Notice that the second implicit parameter to Eq.subst, which provides the context in which the substitution is to occur, has type α → Prop. Inferring this predicate therefore requires an instance of higher-order unification. In full generality, the problem of determining whether a higher-order unifier exists is undecidable, and Lean can at best provide imperfect and approximate solutions to the problem. As a result, Eq.subst doesn't always do what you want it to. The macro h ▸ e uses more effective heuristics for computing this implicit parameter, and often succeeds in situations where applying Eq.subst fails.

Because equational reasoning is so common and important, Lean provides a number of mechanisms to carry it out more effectively. The next section offers syntax that allow you to write calculational proofs in a more natural and perspicuous way. But, more importantly, equational reasoning is supported by a term rewriter, a simplifier, and other kinds of automation. The term rewriter and simplifier are described briefly in the next section, and then in greater detail in the next chapter.

Calculational Proofs

A calculational proof is just a chain of intermediate results that are meant to be composed by basic principles such as the transitivity of equality. In Lean, a calculational proof starts with the keyword calc, and has the following syntax:

calc
  <expr>_0  'op_1'  <expr>_1  ':='  <proof>_1
  '_'       'op_2'  <expr>_2  ':='  <proof>_2
  ...
  '_'       'op_n'  <expr>_n  ':='  <proof>_n

Note that the calc relations all have the same indentation. Each <proof>_i is a proof for <expr>_{i-1} op_i <expr>_i.

We can also use _ in the first relation (right after <expr>_0) which is useful to align the sequence of relation/proof pairs:

calc <expr>_0 
    '_' 'op_1' <expr>_1 ':=' <proof>_1
    '_' 'op_2' <expr>_2 ':=' <proof>_2
    ...
    '_' 'op_n' <expr>_n ':=' <proof>_n

Here is an example:

variable (a b c d e : Nat)
variable (h1 : a = b)
variable (h2 : b = c + 1)
variable (h3 : c = d)
variable (h4 : e = 1 + d)

theorem T : a = e :=
  calc
    a = b      := h1
    _ = c + 1  := h2
    _ = d + 1  := congrArg Nat.succ h3
    _ = 1 + d  := Nat.add_comm d 1
    _ = e      := Eq.symm h4

This style of writing proofs is most effective when it is used in conjunction with the simp and rewrite tactics, which are discussed in greater detail in the next chapter. For example, using the abbreviation rw for rewrite, the proof above could be written as follows:

# variable (a b c d e : Nat)
# variable (h1 : a = b)
# variable (h2 : b = c + 1)
# variable (h3 : c = d)
# variable (h4 : e = 1 + d)
theorem T : a = e :=
  calc
    a = b      := by rw [h1]
    _ = c + 1  := by rw [h2]
    _ = d + 1  := by rw [h3]
    _ = 1 + d  := by rw [Nat.add_comm]
    _ = e      := by rw [h4]

Essentially, the rw tactic uses a given equality (which can be a hypothesis, a theorem name, or a complex term) to "rewrite" the goal. If doing so reduces the goal to an identity t = t, the tactic applies reflexivity to prove it.

Rewrites can be applied sequentially, so that the proof above can be shortened to this:

# variable (a b c d e : Nat)
# variable (h1 : a = b)
# variable (h2 : b = c + 1)
# variable (h3 : c = d)
# variable (h4 : e = 1 + d)
theorem T : a = e :=
  calc
    a = d + 1  := by rw [h1, h2, h3]
    _ = 1 + d  := by rw [Nat.add_comm]
    _ = e      := by rw [h4]

Or even this:

# variable (a b c d e : Nat)
# variable (h1 : a = b)
# variable (h2 : b = c + 1)
# variable (h3 : c = d)
# variable (h4 : e = 1 + d)
theorem T : a = e :=
  by rw [h1, h2, h3, Nat.add_comm, h4]

The simp tactic, instead, rewrites the goal by applying the given identities repeatedly, in any order, anywhere they are applicable in a term. It also uses other rules that have been previously declared to the system, and applies commutativity wisely to avoid looping. As a result, we can also prove the theorem as follows:

# variable (a b c d e : Nat)
# variable (h1 : a = b)
# variable (h2 : b = c + 1)
# variable (h3 : c = d)
# variable (h4 : e = 1 + d)
theorem T : a = e :=
  by simp [h1, h2, h3, Nat.add_comm, h4]

We will discuss variations of rw and simp in the next chapter.

The calc command can be configured for any relation that supports some form of transitivity. It can even combine different relations.

example (a b c d : Nat) (h1 : a = b) (h2 : b ≤ c) (h3 : c + 1 < d) : a < d :=
  calc
    a = b     := h1
    _ < b + 1 := Nat.lt_succ_self b
    _ ≤ c + 1 := Nat.succ_le_succ h2
    _ < d     := h3

You can "teach" calc new transitivity theorems by adding new instances of the Trans type class. Type classes are introduced later, but the following small example demonstrates how to extend the calc notation using new Trans instances.

def divides (x y : Nat) : Prop :=
  ∃ k, k*x = y

def divides_trans (h₁ : divides x y) (h₂ : divides y z) : divides x z :=
  let ⟨k₁, d₁⟩ := h₁
  let ⟨k₂, d₂⟩ := h₂
  ⟨k₁ * k₂, by rw [Nat.mul_comm k₁ k₂, Nat.mul_assoc, d₁, d₂]⟩

def divides_mul (x : Nat) (k : Nat) : divides x (k*x) :=
  ⟨k, rfl⟩

instance : Trans divides divides divides where
  trans := divides_trans

example (h₁ : divides x y) (h₂ : y = z) : divides x (2*z) :=
  calc
    divides x y     := h₁
    _ = z           := h₂
    divides _ (2*z) := divides_mul ..

infix:50 " ∣ " => divides

example (h₁ : divides x y) (h₂ : y = z) : divides x (2*z) :=
  calc
    x ∣ y   := h₁
    _ = z   := h₂
    _ ∣ 2*z := divides_mul ..

The example above also makes it clear that you can use calc even if you do not have an infix notation for your relation. Finally we remark that the vertical bar in the example above is the unicode one. We use unicode to make sure we do not overload the ASCII | used in the match .. with expression.

With calc, we can write the proof in the last section in a more natural and perspicuous way.

example (x y : Nat) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
  calc
    (x + y) * (x + y) = (x + y) * x + (x + y) * y  := by rw [Nat.mul_add]
    _ = x * x + y * x + (x + y) * y                := by rw [Nat.add_mul]
    _ = x * x + y * x + (x * y + y * y)            := by rw [Nat.add_mul]
    _ = x * x + y * x + x * y + y * y              := by rw [←Nat.add_assoc]

The alternative calc notation is worth considering here. When the first expression is taking this much space, using _ in the first relation naturally aligns all relations:

example (x y : Nat) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
  calc (x + y) * (x + y)
    _ = (x + y) * x + (x + y) * y       := by rw [Nat.mul_add]
    _ = x * x + y * x + (x + y) * y     := by rw [Nat.add_mul]
    _ = x * x + y * x + (x * y + y * y) := by rw [Nat.add_mul]
    _ = x * x + y * x + x * y + y * y   := by rw [←Nat.add_assoc]

Here the left arrow before Nat.add_assoc tells rewrite to use the identity in the opposite direction. (You can enter it with \l or use the ascii equivalent, <-.) If brevity is what we are after, both rw and simp can do the job on their own:

example (x y : Nat) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
  by rw [Nat.mul_add, Nat.add_mul, Nat.add_mul, ←Nat.add_assoc]

example (x y : Nat) : (x + y) * (x + y) = x * x + y * x + x * y + y * y :=
  by simp [Nat.mul_add, Nat.add_mul, Nat.add_assoc]

The Existential Quantifier

Finally, consider the existential quantifier, which can be written as either exists x : α, p x or ∃ x : α, p x. Both versions are actually notationally convenient abbreviations for a more long-winded expression, Exists (fun x : α => p x), defined in Lean's library.

As you should by now expect, the library includes both an introduction rule and an elimination rule. The introduction rule is straightforward: to prove ∃ x : α, p x, it suffices to provide a suitable term t and a proof of p t. Here are some examples:

example : ∃ x : Nat, x > 0 :=
  have h : 1 > 0 := Nat.zero_lt_succ 0
  Exists.intro 1 h

example (x : Nat) (h : x > 0) : ∃ y, y < x :=
  Exists.intro 0 h

example (x y z : Nat) (hxy : x < y) (hyz : y < z) : ∃ w, x < w ∧ w < z :=
  Exists.intro y (And.intro hxy hyz)

#check @Exists.intro

We can use the anonymous constructor notation ⟨t, h⟩ for Exists.intro t h, when the type is clear from the context.

example : ∃ x : Nat, x > 0 :=
  have h : 1 > 0 := Nat.zero_lt_succ 0
  ⟨1, h⟩

example (x : Nat) (h : x > 0) : ∃ y, y < x :=
  ⟨0, h⟩

example (x y z : Nat) (hxy : x < y) (hyz : y < z) : ∃ w, x < w ∧ w < z :=
  ⟨y, hxy, hyz⟩

Note that Exists.intro has implicit arguments: Lean has to infer the predicate p : α → Prop in the conclusion ∃ x, p x. This is not a trivial affair. For example, if we have have hg : g 0 0 = 0 and write Exists.intro 0 hg, there are many possible values for the predicate p, corresponding to the theorems ∃ x, g x x = x, ∃ x, g x x = 0, ∃ x, g x 0 = x, etc. Lean uses the context to infer which one is appropriate. This is illustrated in the following example, in which we set the option pp.explicit to true to ask Lean's pretty-printer to show the implicit arguments.

variable (g : Nat → Nat → Nat)
variable (hg : g 0 0 = 0)

theorem gex1 : ∃ x, g x x = x := ⟨0, hg⟩
theorem gex2 : ∃ x, g x 0 = x := ⟨0, hg⟩
theorem gex3 : ∃ x, g 0 0 = x := ⟨0, hg⟩
theorem gex4 : ∃ x, g x x = 0 := ⟨0, hg⟩

set_option pp.explicit true  -- display implicit arguments
#print gex1
#print gex2
#print gex3
#print gex4

We can view Exists.intro as an information-hiding operation, since it hides the witness to the body of the assertion. The existential elimination rule, Exists.elim, performs the opposite operation. It allows us to prove a proposition q from ∃ x : α, p x, by showing that q follows from p w for an arbitrary value w. Roughly speaking, since we know there is an x satisfying p x, we can give it a name, say, w. If q does not mention w, then showing that q follows from p w is tantamount to showing that q follows from the existence of any such x. Here is an example:

variable (α : Type) (p q : α → Prop)

example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=
  Exists.elim h
    (fun w =>
     fun hw : p w ∧ q w =>
     show ∃ x, q x ∧ p x from ⟨w, hw.right, hw.left⟩)

It may be helpful to compare the exists-elimination rule to the or-elimination rule: the assertion ∃ x : α, p x can be thought of as a big disjunction of the propositions p a, as a ranges over all the elements of α. Note that the anonymous constructor notation ⟨w, hw.right, hw.left⟩ abbreviates a nested constructor application; we could equally well have written ⟨w, ⟨hw.right, hw.left⟩⟩.

Notice that an existential proposition is very similar to a sigma type, as described in dependent types section. The difference is that given a : α and h : p a, the term Exists.intro a h has type (∃ x : α, p x) : Prop and Sigma.mk a h has type (Σ x : α, p x) : Type. The similarity between and Σ is another instance of the Curry-Howard isomorphism.

Lean provides a more convenient way to eliminate from an existential quantifier with the match expression:

variable (α : Type) (p q : α → Prop)

example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=
  match h with
  | ⟨w, hw⟩ => ⟨w, hw.right, hw.left⟩

The match expression is part of Lean's function definition system, which provides convenient and expressive ways of defining complex functions. Once again, it is the Curry-Howard isomorphism that allows us to co-opt this mechanism for writing proofs as well. The match statement "destructs" the existential assertion into the components w and hw, which can then be used in the body of the statement to prove the proposition. We can annotate the types used in the match for greater clarity:

# variable (α : Type) (p q : α → Prop)
example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=
  match h with
  | ⟨(w : α), (hw : p w ∧ q w)⟩ => ⟨w, hw.right, hw.left⟩

We can even use the match statement to decompose the conjunction at the same time:

# variable (α : Type) (p q : α → Prop)
example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=
  match h with
  | ⟨w, hpw, hqw⟩ => ⟨w, hqw, hpw⟩

Lean also provides a pattern-matching let expression:

# variable (α : Type) (p q : α → Prop)
example (h : ∃ x, p x ∧ q x) : ∃ x, q x ∧ p x :=
  let ⟨w, hpw, hqw⟩ := h
  ⟨w, hqw, hpw⟩

This is essentially just alternative notation for the match construct above. Lean will even allow us to use an implicit match in the fun expression:

# variable (α : Type) (p q : α → Prop)
example : (∃ x, p x ∧ q x) → ∃ x, q x ∧ p x :=
  fun ⟨w, hpw, hqw⟩ => ⟨w, hqw, hpw⟩

We will see in Chapter Induction and Recursion that all these variations are instances of a more general pattern-matching construct.

In the following example, we define is_even a as ∃ b, a = 2 * b, and then we show that the sum of two even numbers is an even number.

def is_even (a : Nat) := ∃ b, a = 2 * b

theorem even_plus_even (h1 : is_even a) (h2 : is_even b) : is_even (a + b) :=
  Exists.elim h1 (fun w1 (hw1 : a = 2 * w1) =>
  Exists.elim h2 (fun w2 (hw2 : b = 2 * w2) =>
    Exists.intro (w1 + w2)
      (calc a + b
        _ = 2 * w1 + 2 * w2 := by rw [hw1, hw2]
        _ = 2 * (w1 + w2)   := by rw [Nat.mul_add])))

Using the various gadgets described in this chapter --- the match statement, anonymous constructors, and the rewrite tactic, we can write this proof concisely as follows:

# def is_even (a : Nat) := ∃ b, a = 2 * b
theorem even_plus_even (h1 : is_even a) (h2 : is_even b) : is_even (a + b) :=
  match h1, h2 with
  | ⟨w1, hw1⟩, ⟨w2, hw2⟩ => ⟨w1 + w2, by rw [hw1, hw2, Nat.mul_add]⟩

Just as the constructive "or" is stronger than the classical "or," so, too, is the constructive "exists" stronger than the classical "exists". For example, the following implication requires classical reasoning because, from a constructive standpoint, knowing that it is not the case that every x satisfies ¬ p is not the same as having a particular x that satisfies p.

open Classical
variable (p : α → Prop)

example (h : ¬ ∀ x, ¬ p x) : ∃ x, p x :=
  byContradiction
    (fun h1 : ¬ ∃ x, p x =>
      have h2 : ∀ x, ¬ p x :=
        fun x =>
        fun h3 : p x =>
        have h4 : ∃ x, p x := ⟨x, h3⟩
        show False from h1 h4
      show False from h h2)

What follows are some common identities involving the existential quantifier. In the exercises below, we encourage you to prove as many as you can. We also leave it to you to determine which are nonconstructive, and hence require some form of classical reasoning.

open Classical

variable (α : Type) (p q : α → Prop)
variable (r : Prop)

example : (∃ x : α, r) → r := sorry
example (a : α) : r → (∃ x : α, r) := sorry
example : (∃ x, p x ∧ r) ↔ (∃ x, p x) ∧ r := sorry
example : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := sorry

example : (∀ x, p x) ↔ ¬ (∃ x, ¬ p x) := sorry
example : (∃ x, p x) ↔ ¬ (∀ x, ¬ p x) := sorry
example : (¬ ∃ x, p x) ↔ (∀ x, ¬ p x) := sorry
example : (¬ ∀ x, p x) ↔ (∃ x, ¬ p x) := sorry

example : (∀ x, p x → r) ↔ (∃ x, p x) → r := sorry
example (a : α) : (∃ x, p x → r) ↔ (∀ x, p x) → r := sorry
example (a : α) : (∃ x, r → p x) ↔ (r → ∃ x, p x) := sorry

Notice that the second example and the last two examples require the assumption that there is at least one element a of type α.

Here are solutions to two of the more difficult ones:

open Classical

variable (α : Type) (p q : α → Prop)
variable (a : α)
variable (r : Prop)

example : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) :=
  Iff.intro
    (fun ⟨a, (h1 : p a ∨ q a)⟩ =>
      Or.elim h1
        (fun hpa : p a => Or.inl ⟨a, hpa⟩)
        (fun hqa : q a => Or.inr ⟨a, hqa⟩))
    (fun h : (∃ x, p x) ∨ (∃ x, q x) =>
      Or.elim h
        (fun ⟨a, hpa⟩ => ⟨a, (Or.inl hpa)⟩)
        (fun ⟨a, hqa⟩ => ⟨a, (Or.inr hqa)⟩))

example : (∃ x, p x → r) ↔ (∀ x, p x) → r :=
  Iff.intro
    (fun ⟨b, (hb : p b → r)⟩ =>
     fun h2 : ∀ x, p x =>
     show r from hb (h2 b))
    (fun h1 : (∀ x, p x) → r =>
     show ∃ x, p x → r from
       byCases
         (fun hap : ∀ x, p x => ⟨a, λ h' => h1 hap⟩)
         (fun hnap : ¬ ∀ x, p x =>
          byContradiction
            (fun hnex : ¬ ∃ x, p x → r =>
              have hap : ∀ x, p x :=
                fun x =>
                byContradiction
                  (fun hnp : ¬ p x =>
                    have hex : ∃ x, p x → r := ⟨x, (fun hp => absurd hp hnp)⟩
                    show False from hnex hex)
              show False from hnap hap)))

More on the Proof Language

We have seen that keywords like fun, have, and show make it possible to write formal proof terms that mirror the structure of informal mathematical proofs. In this section, we discuss some additional features of the proof language that are often convenient.

To start with, we can use anonymous "have" expressions to introduce an auxiliary goal without having to label it. We can refer to the last expression introduced in this way using the keyword this:

variable (f : Nat → Nat)
variable (h : ∀ x : Nat, f x ≤ f (x + 1))

example : f 0 ≤ f 3 :=
  have : f 0 ≤ f 1 := h 0
  have : f 0 ≤ f 2 := Nat.le_trans this (h 1)
  show f 0 ≤ f 3 from Nat.le_trans this (h 2)

Often proofs move from one fact to the next, so this can be effective in eliminating the clutter of lots of labels.

When the goal can be inferred, we can also ask Lean instead to fill in the proof by writing by assumption:

# variable (f : Nat → Nat)
# variable (h : ∀ x : Nat, f x ≤ f (x + 1))
example : f 0 ≤ f 3 :=
  have : f 0 ≤ f 1 := h 0
  have : f 0 ≤ f 2 := Nat.le_trans (by assumption) (h 1)
  show f 0 ≤ f 3 from Nat.le_trans (by assumption) (h 2)

This tells Lean to use the assumption tactic, which, in turn, proves the goal by finding a suitable hypothesis in the local context. We will learn more about the assumption tactic in the next chapter.

We can also ask Lean to fill in the proof by writing ‹p›, where p is the proposition whose proof we want Lean to find in the context. You can type these corner quotes using \f< and \f>, respectively. The letter "f" is for "French," since the unicode symbols can also be used as French quotation marks. In fact, the notation is defined in Lean as follows:

notation "‹" p "›" => show p by assumption

This approach is more robust than using by assumption, because the type of the assumption that needs to be inferred is given explicitly. It also makes proofs more readable. Here is a more elaborate example:

variable (f : Nat → Nat)
variable (h : ∀ x : Nat, f x ≤ f (x + 1))

example : f 0 ≥ f 1 → f 1 ≥ f 2 → f 0 = f 2 :=
  fun _ : f 0 ≥ f 1 =>
  fun _ : f 1 ≥ f 2 =>
  have : f 0 ≥ f 2 := Nat.le_trans ‹f 1 ≥ f 2› ‹f 0 ≥ f 1›
  have : f 0 ≤ f 2 := Nat.le_trans (h 0) (h 1)
  show f 0 = f 2 from Nat.le_antisymm this ‹f 0 ≥ f 2›

Keep in mind that you can use the French quotation marks in this way to refer to anything in the context, not just things that were introduced anonymously. Its use is also not limited to propositions, though using it for data is somewhat odd:

example (n : Nat) : Nat := ‹Nat›

Later, we show how you can extend the proof language using the Lean macro system.

Exercises

  1. Prove these equivalences:
variable (α : Type) (p q : α → Prop)

example : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := sorry
example : (∀ x, p x → q x) → (∀ x, p x) → (∀ x, q x) := sorry
example : (∀ x, p x) ∨ (∀ x, q x) → ∀ x, p x ∨ q x := sorry

You should also try to understand why the reverse implication is not derivable in the last example.

  1. It is often possible to bring a component of a formula outside a universal quantifier, when it does not depend on the quantified variable. Try proving these (one direction of the second of these requires classical logic):
variable (α : Type) (p q : α → Prop)
variable (r : Prop)

example : α → ((∀ x : α, r) ↔ r) := sorry
example : (∀ x, p x ∨ r) ↔ (∀ x, p x) ∨ r := sorry
example : (∀ x, r → p x) ↔ (r → ∀ x, p x) := sorry
  1. Consider the "barber paradox," that is, the claim that in a certain town there is a (male) barber that shaves all and only the men who do not shave themselves. Prove that this is a contradiction:
variable (men : Type) (barber : men)
variable (shaves : men → men → Prop)

example (h : ∀ x : men, shaves barber x ↔ ¬ shaves x x) : False := sorry
  1. Remember that, without any parameters, an expression of type Prop is just an assertion. Fill in the definitions of prime and Fermat_prime below, and construct each of the given assertions. For example, you can say that there are infinitely many primes by asserting that for every natural number n, there is a prime number greater than n. Goldbach's weak conjecture states that every odd number greater than 5 is the sum of three primes. Look up the definition of a Fermat prime or any of the other statements, if necessary.
def even (n : Nat) : Prop := sorry

def prime (n : Nat) : Prop := sorry

def infinitely_many_primes : Prop := sorry

def Fermat_prime (n : Nat) : Prop := sorry

def infinitely_many_Fermat_primes : Prop := sorry

def goldbach_conjecture : Prop := sorry

def Goldbach's_weak_conjecture : Prop := sorry

def Fermat's_last_theorem : Prop := sorry
  1. Prove as many of the identities listed in the Existential Quantifier section as you can.